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Figure 1.  Multiple visual and audio violence in complex scenarios. 
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Abstract—Detecting violence in video is a challenging task due 

to its complex scenarios and great intra-class variability. Most 

previous works specialize in the analysis of appearance or motion 

information, ignoring the co-occurrence of some audio and visual 

events. Physical conflicts such as abuse and fighting are usually 

accompanied by screaming, while crowd violence such as riots 

and wars are generally related to gunshots and explosions. 

Therefore, we propose a novel audio-guided multimodal violence 

detection framework. First, deep neural networks are used to 

extract visual and audio features, respectively. Then, a Cross-

Modal Awareness Local-Arousal (CMA-LA) network is proposed 

for cross-modal interaction, which implements audio-to-visual 

feature enhancement over temporal dimension. The enhanced 

features are then fed into a multilayer perceptron (MLP) to 

capture high-level semantics, followed by a temporal convolution 

layer to obtain high-confidence violence scores. To verify the 

effectiveness of the proposed method, we conduct experiments on 

a large public violent video dataset, i.e., XD-Violence. 

Experimental results demonstrate that our model outperforms 

several methods and achieves new state-of-the-art performance. 

Keywords-Violence Detection; multi-modal fusion; weak 

supervision; multiple instance learning 

I. INTRODUCTION 

Violence such as abuse, fighting, and gunshots not only 
adversely affects the physical and mental health of individuals 
but also poses a serious threat to public security. Therefore, 
monitoring of public violence has become increasingly 
important for preventing criminal behavior. However, most 
existing surveillance systems require manual inspection, and 
the scarcity of highly qualified security personnel leads to low 
efficiency and false alarm detection. In addition, monitoring 
large amounts of video footage for long periods can easily lead 
to distraction and fatigue due to the limited capabilities of 
alarm devices. As a result, there is a growing demand for 
automatic violence detection systems today. 

In the early days, most work typically uses hand-crafted 
feature descriptors to construct visual representations of frame 
sequences. Clarin et al. [1] develop the DOVE system, which 
detects gore and action violence by analyzing the motion 
intensity between adjacent frames. In [2], Nievas et al. use the 
bag-of-words model combining Space-Time Interest Points 
(SITP) and motion scale-invariant feature transform (MoSIFT) 
descriptors for fight detection. Similarly, Hassner et al. [3] 
propose the Violent Flow (ViF) descriptor to detect violence in 
the crowd. Since visual violence such as abuse, fighting, and 
riot is generally accompanied by auditory elements such as 
screaming, explosions, and gunshots, as shown in Fig. 1, it is 
recognized that audio information plays a complementary role 
in violence detection. Giannakopoulos et al. [4] utilize several 
shallow audio features including Zero Crossing Rate (ZCR), 
spectrograms, and Mel-frequency Spectral Coefficients (MFCC) 
to detect violence in movie scenes. [5] proposes a two-stage 
detection process, in which audio and video classifiers are 
combined in a co-training manner to obtain credible violence 
prediction scores. Penet et al. [6] explore temporal integration 
and multimodal information fusion strategy for violence 
detection. The above methods perform well on simple 
behaviors and use fewer computing resources, but they rely too 
much on feature engineering resulting in less robustness. 
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Figure 2.  Overview of the audio-guided multimodal violence detection framework. 

Recently, deep neural networks have been widely used for 
violence detection, which attributes to their powerful feature 
representation capabilities. Fudan-Huawei [7] uses a 2D neural 
network to extract spatial features of video frames, including 
RGB features and motion features, after which a long short-
term memory (LSTM) network is introduced to capture long-
range dependencies. Multiple SVM-based classifiers are fused 
for a reliable result. Zhou et al. [8] construct a FightNet for 
detecting complex violence interactions, in which the 
acceleration field of optical flow is proposed to describe motion 
properties. Gu et al. [9] use two network structures, P3D and 
LSTM, to model the correlation of continuous frame sequences, 
while VGGish is utilized to extract audio features for auxiliary 
detection. In [10], Wu et al. build an HL-Net in which graph 
convolution is used to construct the temporal relationships of 
adjacent video clips, while positional coding is employed to 
capture local-range dependencies. Most of the above methods 
use visual information for violence detection, and only simple 
concatenation or addition operations for audio information, 
ignoring the contextual correlation between audio and video in 
the temporal order. 

In this paper, we propose an audio-guided attention network 
for multimodal violence detection. Instead of directly fusing 
audio information with visual features, it is used for cross-
modal awareness to re-calibrate the visual field. A self-adaptive 
Gaussian-like position prior is then used to activate contextual 
information and reduce channel-wise redundancy. The 
enhanced features are fed into a two-layer MLP for semantic 
encoding, followed by a 1D convolutional layer for temporal 
causal inference. Extensive experiments on a benchmark 
dataset, XD-Violence, validate the effectiveness of our 
approach and achieve competitive results compared to other 
state-of-the-art methods. 

II. PROPOSED METHOD 

In this section, we describe our multimodal violence 
detection framework in detail, as shown in Fig. 2. First, two 
deep neural networks are employed to extract visual and audio 
features, respectively. Then, a Cross-Modal Awareness Local-
Arousal (CMA-LA) module is proposed to implement cross-

modal interactions, which further calibrates the video 
representation over the temporal dimension. Finally, the 
abstract semantics obtained after MLP is used for violence 
detection, and our objective function is designed based on 
multiple instance learning (MIL) under weak supervision. 

A. Feature Extraction 

Given an untrimmed video, we first divide it into non-
overlapping clips, where each clip contains 16 frames. 
Subsequently, these clips are sent into a pretrained I3D [11] 
model to extract visual features. Hence, the visual feature is 
denoted as , where  is the number of clips and  
is the feature dimension. For the audio waveform, we divide it 
into overlapping 960ms segments, where each segment is 
aligned with the end of the video clip. The VGGish [12] 
network pre-trained on Audioset [13] is used to extract audio 
features , corresponding to a feature dimension of 
128. 

B. Cross-Modal Awareness-Local Arousal Module 

After obtaining visual and audio features, modeling the 
contextual relations of multimodal representations is further 
explored. Instead of using the common feature concatenation or 
channel-wise summation, we propose a cross-modal aware-
local arousal (CMA-LA) module to achieve enhancement of 
audio to visual features. In this process, audio is used to 
generate a global attention map  across modalities, which is 
expressed as: 

                                              (1) 
where  and  are two linear projection 
functions, and  is the dimension of hidden layers. The 
obtained attention map describes the global correlation between 
audio and visual features over the temporal dimension, 
allowing the visual clip to gain global audio perception. 
Subsequently, we use a self-adaptive position prior to achieve 
local arousal of the visual representation, which is expressed as: 

                                               (2) 

where  and  are the relative distances of the clips, and   are 
two learned parameters used to control the neighborhood of the 
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Figure 3.  Structure of Cross-Modal Awareness Local-Arousal 

(CMA-LA) 

center position and adjust the weight of the current clip, 
respectively. By adding the local prior  to the global attention 
map , we obtain a local-arousal attention map , which 
calibrates the weights within the neighborhood of the current 
clip while suppressing information redundancy in the temporal 
order, as shown in Fig. 3. Thus, the cross-modal awareness 
(CMA) can be formulated as follows: 

                                             (3) 

where and  are two linear mapping layers and  
denotes a layer norm operation. A shortcut connection is also 
used to maintain the original distribution of visual features. 

C. Multilayer Perceptron 

Subsequently, we feed the enhanced visual features into an 
MLP to capture the high-level semantics, which consists of two 
1D Convolution layers and a GELU activation. The operation 
is represented as: 

                                                                       (4) 
Finally, a temporal convolution layer is used to capture 

historical observations and obtain prediction scores, which is 
expressed as follows: 

                                                               (5) 
where denotes a sigmoid function,  denotes a  
convolution of kernel size K, and  is a bias term. Causal 
convolution allows us to capture historical observations, which 
provides a strong discriminative basis for violence detection. 
Finally, we obtain the violence predictions  within 
a video bag. 

D. Object Function 

In this paper, violence detection is considered as a multiple 
instance learning (MIL) task under weak supervision. 
Following [14][15][10], we use the mean value of the -max 
predictions in the video bag as the violence score, where 

. The -max predictions with the highest violence 

scores in the positive bag are most likely to contain violence, 
while the -max predictions in the negative bag are usually 
hard samples which may lead to false alarm detection. 
Therefore, our objective function is expressed as: 

                                                      (6) 

where  is the video-level annotation, and  is the average 
value of the -max predictions in the video bag. 

III. EXPERIMENTS 

To validate the effectiveness of the proposed method, we 
conduct experiments on a challenging violent video dataset, 
XD-Violence [10], which is also the largest publicly available 
violence dataset containing both video and audio. The dataset 
contains a total of 4754 untrimmed videos, with a total duration 
of 217 hours. Six common types of violence including abuse, 
car accident, explosion, fighting, riot, and shooting are covered. 
Following [10], we use the frame-level average precision (AP) 
as the evaluation metric, which is more sensitive to unbalanced 
classes (e.g., violence). First, we present implementation details 
of the experimental setup. Then, we compare the performance 
with previous state-of-the-art and show a series of ablation 
studies, which further validate the superiority of the model in 
this paper. 

A. Experimental Setup 

The hidden layer in CMA has a dimension of 128, the units 
of the two-layered MLP are 512 and 128, respectively, with a 
dropout layer of which rate is 0.1.  is empirically set to 200 
and  is set to 16. The Adam optimizer is used to update the 
network parameters, where the batch size is set to 128 and the 
initial learning rate is set to 0.0005. 

B. Quantitative analysis 

Effect of CMA-LA. We first explore the effect of cross-
modal awareness (CMA) on model performance, as shown in 
Table 1. It can be seen that the frame-level AP value is 73.88% 
in the case of RGB features only, while it significantly 
improves to 82.15% after introducing the global attention map 
generated via audio. This suggests that reasonable modeling of 
contextual associations across modalities is useful and 
necessary. Meanwhile, we analyze the local-arousal (LA) role 
of the position prior. Notably, the position prior over temporal 
dimension shows a 1.39% improvement on a global-aware 
basis. With a self-adaptive position prior, the attention weights 
of the current clip are dynamically adjusted, and the position 
preference from the  clip to the  clip is calibrated, further 
achieving temporal alignment of audio and visual information. 

TABLE I.  EFFECT OF CMA-LA MODULE ON XD-VIOLENCE 

Method AP (%) 

RGB only 73.88 

RGB + CMA 82.15 

RGB + CMA + LA 83.54 

 

Effect of temporal convolution. Also, we analyze how 
different kernel sizes of temporal convolution affect the model 
performance. Fig. 4 shows that the test AP value gradually 
improves with the increasing of the kernel size until it exceeds 
a specific value, which indicates that larger convolution kernels 
may cause overfitting. The best performance is reached on XD-
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Figure 4.  Effect of different kernel size of temporal convolution 

Violence when  is set to 7, and the corresponding average 
precision is 83.54%. 

Comparison with state-of-the-art methods. Finally, we 
compare the currently available state-of-the-art methods. It is 
clear that our model substantially outperforms Wu et al. [10] by 
4.9% and Pang et al. [18] by 1.85%, achieving a new state-of-
the-art result. The former uses a GCN for temporal modeling of 
segments and does not explore multimodal fusion. In contrast, 
Pang et al. use co-attention to fuse information from visual and 
audio. Unlike explicitly combining visual and audio 
information, we only use audio as a cross-modal prior to re-
calibrate the visual features, and eventually use the enhanced 
visual features for inference. This also demonstrates that audio 
has a non-negligible role in violence detection.  

TABLE II.  FRAME-LEVEL AP PERFORMANCE ON XD-VIOLENCE 

Method AP (%) 

SVM 50.78 

OCSVM [16] 27.25 

Hasan et al. [17] 30.77 

Sultani et al. [14] 73.20 

Wu et al. [10] 78.64 

Pang et al. [18] 81.69 

Ours 83.54 

IV. CONCLUSION 

In this paper, we propose a novel audio-guided multimodal 
violence detection framework. First, deep neural networks are 
utilized to extract visual and audio features, respectively. A 
global attention map with audio perception is generated 
through cross-modal awareness (CMA) module, which 
implicitly learns global audio information. Local Arousal (LA) 
is subsequently performed on the attention map using a self-
adaptive position prior, and the temporal neighborhood of 
visual clips is re-calibrated to suppress channel-wise noises. To 
validate the proposed method, we conduct experiments on a 
challenging violent video dataset, i.e., XD-Violence, and 
achieve a leading result. Comprehensive experiments indicate 
the effectiveness of our approach. In the future, we will further 
explore the role of different position prior, while the 

multimodal interaction approach also deserves in-depth 
investigation. 
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