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Automatic violence detection has received continuous attention due to its broad application prospects.
However, most previous work prefers building a generalized pipeline while ignoring the complexity
and diversity of violent scenes. In most cases, people judge violence by a variety of sub-concepts, such
as blood, fighting, screams, explosions, etc., which may show certain co-occurrence trends. Therefore,
we argue that parsing abstract violence into specific semantics helps to obtain the essential representa-
tion of violence. In this paper, we propose a semantic multimodal violence detection framework based on
local-to-global embedding. The local semantic detection is designed to capture fine-grained violent ele-
ments in the video via a set of local semantic detectors, which is generated from a variety of external
word embeddings. Also, we introduce a global semantic alignment branch to mitigate the intra-class vari-
ance of violence, in which violent video embeddings are guided to form a compact cluster while keeping a
semantic gap with non-violent embeddings. Furthermore, we construct a multimodal cross-fusion net-
work (MCN) for multimodal feature fusion, which consists of a cross-adaptive module and a cross-
perceptual module. The former aims to eliminate inter-modal heterogeneity, while the latter suppresses
task-irrelevant redundancies to obtain robust video representations. Extensive experiments demonstrate
the effectiveness of the proposed method, which has a superior generalization capacity and achieves
competitive performance on five violence datasets.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

Violence not only seriously affects the physical and mental
health of individuals but also endangers social stability. Psycholog-
ical studies [1–3] show that adverse environmental stimuli around
adolescents, especially long-term violence exposure [4], can fuel
their violent emotions and even cause impulsive behaviors. The
violent content of media represented by news reports, film and
television works, and online games enriches the resources for indi-
viduals to imitate aggressive behaviors [5,6]. Relying on manual
regulation of these contents can no longer meet the practical needs
of today’s society. Therefore, autonomous violence detection is of
great significance for preventing criminal acts and maintaining
public security.

Since most violent videos are associated with specific entities
and actions, some early work focuses mainly on rich visual infor-
mation, with shallow features represented by handcrafted features
used for characterization. [7] proposes the DOVE system, which
determines violence by detecting whether a video frame contains
blood within skin regions. Hassner et al. [8] use information about
the optical flow between adjacent frames to express violent motion
features. Later, it has been realized that audio contains violent
information that may not be covered by visual elements, such as
gunshots, explosions, screams, etc., which also play a non-
negligible role in violence detection. In [9], Zajdel et al. utilize a
mid-level descriptor of scream to establish complementarity
between audio and video sensing, aiming to detect instances of
human aggression in public. [10] composes the audio view under
weak supervision to detect violent scenes in movies, and the video
and audio classifiers are jointly trained to yield potent decision
scores.

The rise of deep neural networks has made efficient violence
detection possible. Convolutional neural networks, or CNNs, are
widely used to extract static frame features, which are generally
fed into a long short-term memory (LSTM) network [11] for tem-
poral encoding. [12] constructs a two-stream structure to extract
appearance features and motion features, respectively, followed
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by an LSTM network to capture long-range dependencies. Both
[13,14] exploit a convolutional LSTM network for spatiotemporal
modeling of visual features. In recent years, 3D convolutional net-
works are introduced to capture the spatiotemporal correlation of
videos simultaneously. Song et al. [15] develop a modified 3D-CNN
using keyframe localization to distinguish violence. In [16], Li et al.
construct an efficient 3D convolutional network for end-to-end
violence recognition, which significantly outperforms the previous
ConvLSTM structure with fewer parameters. Gu et al. [17] cascade
a P3D network with an LSTM network to capture the spatiotempo-
ral dependences of the video clip, and an early fusion of three
modalities is introduced to obtain robust violence representations.

However, most existing studies focus on generalized violence
and ignore the complex semantics of violent scenarios. We believe
that the high-level cognition of violence comes from specific enti-
ties or behaviors, such as blood, gunshots, fights, explosions, etc, as
shown in Fig. 1. The combination of these entities or behaviors
somehow forms the abstract human understanding of violence.
We also notice that these entities and behaviors of violence exhibit
a clear co-occurrence trend: physical conflicts such as abuse, rape,
and fights are usually accompanied by blood, ropes, and cudgels,
while riots and wars are generally associated with screams, explo-
sions, and gunshots. The complex scenarios lead to the distribution
of violent videos with significant intra-class variance, while some
dramatic non-violent videos are prone to false alarms. In addition,
with a wide range of data sources, including movies, TV dramas,
surveillance cameras, and Internet videos, it becomes challenging
work to build a unified framework to accommodate datasets across
different source domains.

To address the above problems, we propose a semantic multi-
modal violence detection model with local-to-global embedding,
which dynamically captures local violence elements while re-
calibrating the abstract semantics of violent videos. Specifically,
we propose two branches corresponding to the above issues: (1)
Local Semantic Detection translates abstract violence into specific
sub-concepts, which we call local semantics, and these local
semantics are dynamically captured by a set of local semantic
Fig. 1. Complex semantics of vi
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detectors generated from external word embeddings. Thus, differ-
ent violent videos can be detected in a fine-grained way to improve
classification performance. (2) Global Semantic Alignment aims
to re-calibrate the abstract semantics across different violent
videos, thus alleviating the intra-class variance. The global seman-
tic descriptor constructed by violence word embeddings guides the
violent class to cluster in a joint semantic space while maintaining
a distance from the non-violent class. This allows erroneous sam-
ples with similar abstract semantics to be further corrected. To val-
idate the effectiveness of the proposed method, we conduct
experiments on five different violence datasets. Comprehensive
results indicate that our model outperforms other approaches
and achieves competitive results on these datasets. To the best of
our knowledge, this is the first work to introduce external seman-
tics for violence detection.

To summarize, the main contributions of this paper are
threefold.

� We propose a Local Semantic Detection (LSD) branch to dynam-
ically capture diverse sub-concepts of violence by a set of local
semantic detectors, which is generated from external word
embeddings updated by a graph convolutional network.

� We introduce a Global Semantic Alignment (GSA) strategy to re-
calibrate the abstract semantics across violent videos, where a
global semantic descriptor is constructed to guide the clustering
of violent samples while enlarging the semantic gap from non-
violent class.

� We build a Multimodal Cross-fusion Network (MCN) to elimi-
nate the heterogeneity gap and suppress irrelevant redundan-
cies across modalities, which consists of a cross-adaptive
module and a cross-perceptual module.

The remainder of this paper is organized as follows. In Section 2,
we explore the related work in violence detection. In Section 3, the
proposed semantic multimodal violence detection framework is
further specified. In Section 4, we present the setup details and
olence in diverse scenarios.
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analyze the experimental results. Finally, in Section 5, we conclude
the paper and discuss possible future work.
2. Related work

The goal of violence detection varies according to different data-
set types, and our approach focuses on determining whether a
video clip is violent or not. In this section, we mainly review some
existing violence detection methods, including traditional methods
and deep learning methods. In general, deep learning methods
achieve superior performance with powerful encoding capacities
while traditional methods have better theoretical interpretability.

2.1. Traditional methods

In earlier work, researchers mainly use handcrafted features for
violence detection. Manually designed descriptors like Scale-
Invariant Feature Transform (SIFT) [18] and Histogram of Oriented
Gradients (HOG) [19] are used to characterize visual features,
which are then fed into a specific classifier (e.g., SVM, k-Nearest
Neighbor, Naive Bayes) for classification.

Common motion descriptors [20–22] including Space–Time
Interest Points (STIP), improved Dense Trajectories (iDT), and His-
tograms of Oriented Optical Flow (HOOF) are also widely used for
violence detection. Gao et al. [23] propose an improved OViF
descriptor to detect violence in a crowd. Zhang et al. [24] develop
an extension of spatial descriptors by adding temporal components
to capture local motion information. HOMO is proposed in [25],
which obtains amplitude and directional gradients by comparing
the optical flow of adjacent frames.

Audio can also be practical complementary information [26–28]
and descriptors like pitch, spectrogram, Zero-Crossing Rate (ZCR),
Mel Frequency Cepstrum Coefficient (MFCC), etc., have been intro-
duced for violence detection. For different modalities, early fusion
methods or late fusion strategies are commonly used to achieve
better performance [29–31]. Dong et al. [32] combine video
frames, optical flows, and accelerated flowmaps as multiple inputs
to detect person-to-person violence. Although these well-
established traditional algorithms are relatively fast and reliable
in some specific cases, they rely too much on feature engineering
with poor robustness and generalization.

2.2. Deep learning methods

In recent years, some researchers have tried deep neural net-
works for violence detection. Ersa et al. [33] propose a coarse-to-
fine violence detection framework, where coarse-grained MFCC
audio features are used for timing efficiency, while fine-grained
advanced motion features are used when necessary. In [34], Zhou
et al. build the FightNet based on a temporal segment network
for detecting visual violence in complex scenes. [35] deploys a
hybrid framework in which handcrafted and deep features are
effectively combined to obtain better violence classification
results. Later, Xu et al. [36] propose a dual-stream structure con-
sisting of an object detector and FlowNet for both localization
and recognition of fight actions. [37] exploits two network struc-
tures, C3D and CNN-LSTM, to explore high-level concepts and the
objective form of violence in videos, respectively, and merged both
to identify different violent subjects. Wu et al. [38] build an HL-Net
with two branches to capture the long-range dependencies and
local positional relations of the video, respectively. In [39], Su
et al. propose a SPIL model for fight detection, which uses a graph
convolutional network to capture physical action interactions.
Similarly, Liu et al. [40] construct a skeleton-based monitoring sys-
tem for violent action recognition and abuser tracking.
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Recently, [41] proposes a Flow Gated Network that combines
the advantages of 3D-CNN and optical flow for violence detection
in surveillance footage. Fernando et al. [42] use a bidirectional
ConvLSTM network followed by a multi-head self-attention block
to detect violence. In [43], Islam et al. introduce a Separable Convo-
lutional LSTM network for violence recognition, and a dual-stream
structure with background suppression and frame difference is
constructed to capture motion information. Asad et al. [44] explore
a multi-level feature fusion strategy to merge diverse motion pat-
terns, in which a Wide-Dense Residual Block (WDRB) is con-
structed to capture wide-range spatial features. Iqbal et al. [45]
propose a weakly supervised Orientation Aware Object Detection
(OAOD) algorithm for the automatic detection of firearms. How-
ever, most of these methods detect generalized violent events
without exploring the semantic properties of violent elements,
which is difficult for parsing complex violence scenarios.

In contrast to the above approaches, we propose a novel seman-
tic multimodal violence detection model with local-to-global
embedding. First, features of different modalities, i.e., appearance,
motion, and audio (if available), are extracted by deep neural net-
works. Subsequently, a multimodal cross-fusion network (MCN)
enables information sharing and complementarity by alleviating
the heterogeneity gap across different modalities. Most impor-
tantly, we introduce a local-to-global embedding strategy, in
which the generated local semantic detectors capture various
sub-concepts of violence in the video while the global semantic
descriptor reduces the intra-class variance of violence and enlarges
the margin with non-violent samples.

3. The proposed method

In this section, we present the proposed violence detection
framework in detail, which mainly consists of three parts: multi-
modal feature extraction, multimodal cross-fusion network, and
local-to-global embedding, as shown in Fig. 2. First, we extract
multimodal features using different deep neural networks. Subse-
quently, a multimodal cross-fusion network is constructed for
effective multimodal feature fusion, followed by a multilayer per-
ceptron (MLP) for violence detection. Finally, local semantic detec-
tion and global semantic alignment are jointly introduced in a
multi-task learning manner for optimization.

3.1. Multimodal feature extraction

For the intelligent detection of violent videos, it is important to
effectively mine multimodal information. In this part, we firstly
utilize different neural network backbones to extract multimodal
features, i.e., appearance, motion, and audio.

3.1.1. Appearance feature extraction
RGB frames often contain rich visual information, which is

widely used for violence detection. Considering a large amount of
redundancy between adjacent video frames, reasonable time-
domain sampling is necessary. Dense sampling can capture the
motion trajectory of frame sequences but has a limited span, while
uniform sampling has an expansive sampling range but covers few
violent frames. To compensate for the shortcomings mentioned
above, we try to obtain a better video representation by increasing
the number of sampled clips.

Assuming that the total number of frames of the original video
V is T and the length of the sampled segments is l, the hybrid sam-
pling process is defined as

v i
j ¼ Vsþði�1Þ�sþk; s 2 ½ðj� 1Þ � T

n
; j� T

n
� l� s�; k 2 ½0; s�; ð1Þ



Fig. 2. An overview of the proposed violence detection framework. We take the appearance feature as the primary modality, while the motion or audio feature is treated as an
auxiliary modality. The Multimodal Cross-fusion Network (MCN) aims to alleviate the inter-modal heterogeneity while generating the enhanced fusion feature Xf . The fusion
feature is projected to a latent semantic space by a multilayer perceptron (MLP). Furthermore, we extract the corresponding sub-concept word embeddings from an external
corpus (i.e., Word2Vec) for semantic parsing. The local semantic detection branch captures fine-grained violence elements by multi-label classification loss Lbce , while the
global semantic alignment branch re-calibrates the high-level semantics of violent videos by cosine embedding loss Lcos . Finally, we apply the violence detection loss (i.e., Lce)
and semantic embedding losses (i.e., Lbce and Lcos) to jointly optimize the whole framework.
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where v i
j represents the ith frame of the jth sampling clip, s is the

sampling rate, and k is a random jitter in the time domain for frame
selection. Specifically, the whole frame sequence interval ½0; T� is
equally divided into n subintervals, which are randomly performed
dense or uniform sampling operations. These n clips of length l are
then fed into a pretrained X3D-L network [46] independently to
obtain clip-level features X ¼ fxigni¼1. Then, a scaled dot-product
attention mechanism [47] is applied to aggregate the global contex-
tual information, after which the aggregated clip features are aver-
aged over the temporal dimension to generate video-level
representation Xv .

3.1.2. Motion feature extraction
Optical flow is the instantaneous velocity of the pixel motion of

a moving object on the viewing plane. It suppresses redundant spa-
tial noise and focuses information on the moving target, making it
more suitable for movement description. First, we use the TV-L1
algorithm [48] to extract dense optical flow, where the horizontal
dx and the corresponding vertical dy of adjacent frames are stacked
to form an optical flow graph f ¼ ðdx; dyÞ. Subsequently, it is fed
into a pretrained ResNet50 [49] with a temporal shift module
(TSM) [50] to extract the high-level motion feature Xm.

Different from the appearance feature extraction process, the
optical flow sequence in the time domain is generated by

f i ¼ Fsþk; s 2 ½ði� 1Þ � T
n
; i� T

n
�; k 2 ½0; s�; ð2Þ

where f i denotes the ith optical flow graph in the sampled clip, and

Fi is an optical flow sequence of length T. Since optical flow graphs
are inherently low-level motion features, further dense sampling
and multi-clip input may lead to overfitting. In addition, motion
features are more dependent on the complete video sequence,
and such a sampling strategy can cover more time-domain
information.

3.1.3. Audio feature extraction
As for audio feature extraction, a PANNs model [51] pre-trained

on AudioSet [52] is exploited. We first separate the audio from its
corresponding video and convert it to a logarithmic mel-
spectrogram. Then, the raw audio waveform and mel-
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spectrogram are fed into the PANNs network simultaneously to
capture both time-domain and frequency-domain information.
Concretely, we choose the output vector of CNN14 at the top of
the PANNs as the audio features Xa. More preprocessing details
can be found in the experimental setup in Section 4.

3.2. Multimodal cross-fusion network

Since the above features are extracted from encoders pre-
trained on different datasets, they may contain some task-
irrelevant redundancies that interfere with the fusion process.
Meanwhile, these features exist in their respective representation
spaces as different media forms. Subject to the heterogeneity
gap, direct concatenation or addition may affect the initial distribu-
tion of features and even degrade the quality of the unimodal rep-
resentation. Therefore, we develop a novel multimodal cross-
fusion network (MCN) to obtain the enhanced fusion feature, as
shown in Fig. 3.

The network mainly consists of two parts: a cross-adaptive
module (top) and a cross-perceptual module (bottom left). In the
cross-adaptive module, we first perform cross-modal adaptation
through a gate mechanism, in which the generated attention
weights are used to re-calibrate the initial feature distribution.
Then, a group convolution layer followed by a ReLU function is
applied to project the modality into a joint space to eliminate the
heterogeneity gap.

Here we take the appearance feature Xv as the primary modal-
ity and the audio feature Xa as the auxiliary modality, which is fed
into our proposed MCN network. As some videos lack audio infor-
mation, the motion feature is introduced as the auxiliary. The pro-
cess is formulated as

Xvm ¼ ReLUð/ðXv þ rðXaÞXvÞÞ;
Xa

m ¼ ReLUðwðXa þ rðXvÞXaÞÞ; ð3Þ

where rð�Þ is a sigmoid function, /ð�Þ and wð�Þ are two group convo-
lution layers. Subsequently, we conduct the multimodal interaction
in the common subspace, in which a shared group convolution layer
jð�Þ is used to enhance the joint feature representation. On the one
hand, the kernel of group convolution can effectively capture the
local context over the channel dimension. On the other hand, chan-
nel grouping greatly reduces the number of parameters and pre-



Fig. 3. The structure of the multimodal cross-fusion network.
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vents overfitting. A residual connection is also performed to main-
tain the independence of each modality. The whole process can be
expressed as

Xvs ¼ Xvm þ ReLUðjðXvm þ Xa
mÞÞ;

Xa
s ¼ Xa

m þ ReLUðjðXvm þ Xa
mÞÞ:

ð4Þ

The outputs after the cross-adaptive module are concatenated
as Xc ¼ ðXvs ;Xa

s Þ, which are fed into the cross-perceptual module
to filter task-irrelevant redundancies and activate the inter-
modal consensus. Accordingly, the cross-perceptual module can
be formulated as

Xh ¼ softmax
qðXcÞgðXcÞTffiffiffi

d
p

 !
hðXcÞ; ð5Þ
Xf ¼ flattenðLNðXc þ f ðXhÞÞÞ; ð6Þ

where qð�Þ; gð�Þ and hð�Þ are three different linear layers, d is the hid-
den dimension and LNð�Þ is the layer normalization operation. In the
cross-perceptual module, we use the auxiliary modality to capture
local information across modalities and suppress task-irrelevant
redundant noise in the primary modality.
3.3. Violence detection

After obtaining the fused feature, we use a multilayer percep-
tron (MLP) to generate video embeddings with high-level seman-
tics, which are finally fed into a linear layer for classification. The
process is expressed as

Xe ¼ MLPðXf Þ; ð7Þ
ys ¼ softmaxðWXe þ bÞ; ð8Þ

where ys denotes the prediction score,W is a linear projection func-
tion and b is a bias term. A binary cross-entropy loss function is
used for supervised learning of violence detection, which is calcu-
lated as

Lce ¼ 1
N

XN
i¼1

�yilogðysi Þ; ð9Þ

where N is the total number of videos, fyigNi¼1 and fysigNi¼1 are the
ground truth and prediction score of the videos, respectively.
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3.4. Local-to-global embedding

Previous efforts mainly focus on the generalized detection of
violent behavior, ignoring the explicit semantics of violent events
and the co-occurrence trend of violent elements. In this section,
we propose a novel semantic embedding strategy to guide violence
detection, including local semantic detection and global semantic
alignment. The former uses word embeddings of violence sub-
concepts to generate a set of local semantic detectors for capturing
specific concepts in video embeddings. The latter aims to align vio-
lence embeddings with a global semantic descriptor, eliminating
the intra-class variance of violent classes while enlarging the
semantic gap from nonviolence embeddings.

3.4.1. Local semantic detection
The concept of violence itself is vague and diverse, and human

determinations of violence are more often derived from specific
entities in some scenarios, such as blood, physical conflict, guns,
explosions, etc. Inspired by this observation, we consider that pars-
ing the abstract concept of violence into localized violent elements
will facilitate the model to learn the essential representation of
violence. Therefore, we first propose a local semantic detection
method to generate local semantic detectors, as shown in Fig. 4.
The combination of these detectors reveals the co-occurrence
trend of violent elements and helps semantic relation reasoning
in complex scenes.

Specifically, we extract word embeddings corresponding to vio-
lence categories from a large text corpus, i.e., Word2Vec [53], and
subsequently construct the semantic relation graph based on con-
ditional probabilities of label co-occurrence (case 1). In particular,
when multi-label annotations are not available, we initialize the
semantic relation graph via a co-similarity matrix (case 2). This
process can be expressed as

Gij ¼
Aðei; ejÞ if case 1;
Sðei; ejÞ if case 2:

�
ð10Þ

Aðei; ejÞ ¼ C
1
2
ðPðejjeiÞ þ PðeijejÞÞ

� �
; ð11Þ

Sðei; ejÞ ¼
eieTj

keikkejk ; ð12Þ

where feigCi¼1 is the original label embeddings, PðejjeiÞ denotes the
probability of occurrence of ej under the condition that ei occurs,
and vice versa. Cð�Þ is a threshold function to smooth the long-
tailed distribution. By constructing the semantic relation graph G,
each independent category is associated with a specific prior. Gen-

erally, a larger Gij indicates that the ith category is more closely

related to the jth category, and this relationship is reflected in the
co-occurrence trend or feature similarity of violent elements.

After obtaining the semantic relation graph, we use a graph
convolutional network (GCN) to generate the local semantic detec-
tors. Specifically, the initial word embeddings are projected to a
latent semantic space by a linear function, and the semantic vec-
tors are subsequently updated by the semantic relation graph.
The update process is formulated as

G
�
ij ¼ expðGijÞXC

k¼1
expðGikÞ

; ð13Þ

Elþ1 ¼ FHðG
�
ElWlÞ; ð14Þ

where G
�
2 R

C�C is a normalized semantic graph, Wl 2 RDe�Dl is a
learned transformation matrix, El 2 RC�De is the hidden representa-



Fig. 4. The overall structure of local semantic detection. We extract word embeddings for a series of violent sub-concepts from a pretrained Word2Vec model. A semantic
relation graph is then constructed based on the label co-occurrence probabilities or co-similarity matrix. The graph convolutional network (GCN) is used to update the word
embeddings to generate local semantic detectors, which are applied to the video embedding to obtain local semantic responses.

Fig. 5. The overview of global semantic alignment. The global semantic descriptor
is constructed to attract violent embeddings while repulsing non-violent
embeddings.
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tion, and FHð�Þrepresents a LeakyReLU unit with a dropout layer.
This operation ensures dynamic knowledge propagation between
different categories, resulting in enhanced word representations,
which we call the local semantic detectors.

Guided by local semantics, the classifier will learn to project
video embeddings from the visual space to the semantic space,
responding to a specific semantics of violence. By applying the
detectors to video representations, we can obtain local violence
prediction scores by

yp ¼ rðEXe þ b0Þ; ð15Þ
where E 2 RC�D is the generated detector and Xe 2 R1�D is the high-
level video embedding.

In the semantic space, the detector can guide the response of
video embeddings with specific local semantics, enabling the figu-
rative parsing of violence concepts. Accordingly, a binary cross
entropy loss function is defined as

Lbce ¼ 1
N

XN
n¼1

yclogðypÞ þ ð1� ycÞlogð1� logðypÞÞ; ð16Þ

where yc 2 R1�C is the multi-label annotation. This loss function
describes the probability distribution of multiple non-mutually
exclusive objects appearing in the same video, which is suitable
for local semantic detection. For datasets lacking multi-label anno-
tations, the local semantic detection loss correspondingly degrades
to a regular binary cross-entropy.

3.4.2. Global semantic alignment
Local semantic detection ensures that different types of violent

elements are distinguished, however, it does not precisely describe
the high-level semantics of violence, i.e., the abstract notion of the
combination of multiple elements. Therefore, we further propose a
global semantic alignment strategy to unify the abstract concept of
element combinations. The constructed global semantic descriptor
conduce to the clustering of violent categories in the semantic
space while maintaining a certain distance from non-violent sam-
ples, as shown in Fig. 5.

To obtain a uniform semantic representation, we construct the
global semantic descriptor using local violence detectors generated
in the joint space. Specifically, we take the mean value of the local
violence detectors as the semantic center of violence, which is for-
mulated as

P ¼ 1
C

XC
i¼1

Ei; ð17Þ

where Ei 2 R1�D is a specific local semantic detector, and C is the
number of violence categories. Since these detectors have similar
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distribution properties and are dynamically updated, their average
value in the semantic space can be used as a semantic prototype
of violence, which is adaptive to datasets from different sources.

Subsequently, we expect different violent video embeddings to
have a certain clustered tendency in the joint semantic space,
maintaining semantic consistency with the global semantic
descriptor. Therefore, we introduce a cosine embedding loss to nar-
row the gap between the violent samples and the descriptor, which
is defined as

Lcos ¼ 1� cosðXe; PÞ if l ¼ 1;
maxð0; cosðXe; PÞÞ if l ¼ �1:

�
ð18Þ

where Xe is the abstract video embedding in the semantic space.
l ¼ 1 or �1 denotes whether the video embedding has the same
semantics as the descriptor P, i.e, when Xe is a violent video,
l ¼ 1, otherwise l ¼ �1.

Global semantic alignment promotes a compact distribution of
violent samples in the semantic space, alleviating the large intra-
class variation caused by the diversity of violent elements. Mean-
while, the descriptor maintains a certain margin with the non-
violent class, clarifying the decision boundary between the two
within the semantic space. By synergizing with local semantic
detection, harmony in diversity of violence categories is further
achieved.

3.5. Objective function

Finally, we merge the local-to-global embedding losses (i.e., Lbce
and Lcos) with the violence detection loss (i.e., Lce) to form the final
objective function for the optimization of the whole framework,
which is expressed as
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L ¼ Lce þ k1Lbce þ k2Lcos ð19Þ
where k1 and k2 are two weight hyperparameters. By optimizing
this final objective function, our framework can yield discriminative
video representations to obtain more accurate prediction results.
The detailed description of our model optimization procedure is
displayed in Algorithm1.1.

Algorithm1: Semantic Multimodal Violence Detection
4. Experiments and validation

To verify the effectiveness of the proposed method, we have
conducted experiments on five different types of violence datasets:
Crowd Violence (Violent Flow) [8], Hockey Fight [54], RLVS [55],
RWF-2000 [41] and VSD2015 [56]. A brief summary of the datasets
is presented in Table 1.

In this work, we mainly focus on the VSD2015 dataset, as it is
not only the largest violence dataset with audio information but
also suffers from severe a category imbalance problem, which
poses a significant challenge for violence detection. Here, we first
introduce the datasets and their corresponding evaluation metrics.
Next, we provide the implementation details and hyperparameter
settings. A series of quantitative and qualitative experiments are
finally presented to demonstrate the effectiveness of the frame-
work in this paper.

4.1. Datasets

1) Crowd Violence contains 246 videos downloaded from You-
Tube, with a 50/50 split between violent and non-violent videos.
The clip length ranges from 1.04 to 6.52 s. The dataset focuses on
violence in crowded scenes with low image resolution.

2) Hockey Fight has a total of 1,000 video clips that are filmed in
hockey games of the National Hockey League. The average length
of these videos is less than 2 s, most of which are physical conflicts
Table 1
Comparison of different violent video datasets.

Dataset Size Duration Scenario Audio

Crowd Violence [8] 246 Clips 1~6s Street Crowd U

Hockey Fight [54] 1,000 Clips 1~2s Ice Hockey �
RLVS [55] 2,000 Clips 3~7s Movies and Sports U*

RWF-2000 [41] 2,000 Clips 5s Surveillance �
VSD2015 [56] 10,900 Clips 8~12s Movies U

* Partially available.
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that occurred during the game. The video was shot from a single
scene and in a simple setting.

3) Real-Life Violence Situations (RLVS) contains 2,000 video clips
with an average length of 5 s, with 1,000 violent and 1,000 non-
violent videos each. The dataset is collected from streets, schools,
and prisons to ensure diversity, and the rest are from YouTube.
Some of the videos contain audio files.

4) RWF-2000 is collected from surveillance videos in real scenes
without audio information. It has a total of 2000 clips, of which
1600 videos are the training set and 400 videos are used for testing.
The number of violent and non-violent video clips is well balanced
and the average duration is about 5 s. Violent contents include
fights, robberies, explosions, assaults,.etc.

5) Violent Scene Detection (VSD2015) is a large audio-visual data-
set released by the Mediaeval 2015 VSD competition, which con-
tains 10,900 clips from Hollywood movies and YouTube videos
ranging from 8 s to 12 s. In particular, we divide this dataset into
six subclasses, including abuse, blood, cold arms, explosion, fight-
ing, and firearms. Considering that multiple violence categories
may exist in the same video, we provide multi-label annotations
for the training set. In addition, there is a severe data imbalance
with only 502 videos being violent and the rest being non-
violent. Therefore, we use random mirroring, rotation, and crop-
ping for data augmentation in the training phase.

4.2. Evaluation metrics

Since the number of violent and non-violent videos in the
VSD2015 dataset is imbalanced, we use the officially specified
average precision (AP) for evaluation, which is more sensitive to
less numerous categories (e.g., violence). The metric is calculated
as

AP ¼ 1
P

XN
i¼1

Li � Pi

i
; ð20Þ

where N is the total number of test sets, P is the number of testing

violent videos, and Li ¼ 1 or 0 indicates whether the ith video is vio-
lent or not. The prediction scores of the testing videos are arranged
in descending order, and Pi videos are predicted correctly in the first
i predicted samples.

For the remaining four datasets, with an equal number of vio-
lent and non-violent classes, we use the testing accuracy to evalu-
ate the model performance, which is formulated as

ACC ¼ TP þ TN
TP þ TN þ FP þ FN

� 100%; ð21Þ

where TP and TN are the numbers of correct hits, while FP and FN
are the numbers of false alarms. Specifically, Crowd, Hockey, and
RLVS are not split to train/test partitions, so we use fivefold cross-
validation for comparison.

4.3. Implementation details

For appearance feature extraction, the number of video subinter-
vals n is adopted as 10, the length l of the clip is set to 16 and the
sampling rate s is set to 5. After size transformation and central crop-
ping, we get an input sequence with a spatial–temporal resolution of
16� 3� 312� 312. These sequences are sent into a pretrained X3D-
L model to obtain 2048-dimensional appearance features.

The dense optical flow is uniformly sampled in the time domain
to obtain a stacked sequence of l� 2� H �W , where 2 denotes the
horizontal and vertical directions, respectively. The scaled trans-
formed sequence is randomly cropped to a spatial size of
224� 224. Finally, the sequence is fed into a ResNet50 network
with a TSM block to obtain the 2048-dimensional motion feature.



Table 3
Comparisons with other state-of-the art methods on different datasets. The best
results are highlighted in bold and the second best results are underlined.

Method Accuracy(%)

Crowd Hockey RLVS RWF

VGG16 + LSTM [55] 90.01 95.1 - -
ConvLSTM [13] 94.57 97.1 - -

Efficient Conv3D [16] 97.17 98.3 - -
VGG16 + WDRB + LSTM [44] 97.1 98.8 - -

P3D + LSTM [17] 97.69 94 - -

Inception-Resnet-V2 [62] 93.33 - 86.79 -
Conv2D + LSTM [63] - 94.5 92 -

Flow Gated Network [41] 88.87 98 - 87.25
SPIL [39] 94.5 96.8 - 89.3

SepConvLSTM [43] - 99.5 - 89.75
DeVTr [64] - - 96.25 -

ViolenceNet [42] 96.9 99.2 95.6 -

Ours 98.22 99.2 98.15 91
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For audio feature extraction, we first separate the audio file
from the video using the moviepy tool. Subsequently, the audio
signal is filtered by a Hamming window with a window size of
1024 and a jump distance of 320. After performing a short-time
Fourier transform, a logarithmic mel-spectrogram with a size of
100� 64 is obtained. Finally, the original audio and spectrogram
are fed into the PANNs network in parallel to generate 2048-
dimensional audio features.

In the MCN network, the output dimension of the group convolu-
tion layers in the cross-adaptive module is 2048 with 512 groups,
while the linear layers of the cross-perceptual module contain
2048 nodes with an output dimension of 128. For the MLP, a group
convolution layer with 1024 units and two linear layers with 300
and 2 units, respectively, are included. The two graph convolution
layers in GCN contain 64 and 300 nodes, with a dropout rate of 0.2.

As for hyperparameters, we empirically set k1 ¼ 2 and k2 ¼ 3 in
the final objective function. The SGD optimizer with momentum is
adopted for optimization, of which the weight decay rate is
1� 10�5 and the momentum term is 0.9. The learning rate is set
to 1� 10�3 with a cosine decay strategy. We train our model for
50 epochs in total with a mini-batch size of 128. All experiments
are conducted on a GTX 1080Ti GPU based on PyTorch.
4.4. Comparison with state-of-the-art methods

We first compare our proposed violence detection framework
with the current state-of-the-art methods. Due to the different
evaluation metrics, we report the AP performance on VSD2015 in
Table 2, while Table 3 shows the test accuracies for the remaining
four datasets. As shown in Table 2, the AP value of our model on
the VSD2015 dataset is significantly better than those of existing
methods, exceeding the latest SOTA results by 6.08%. Compared
to those early fusion methods (e.g., Gu et al.[17] and Peixoto
et al.[57]) and late fusion methods (e.g., Zheng et al.[58]), our
method obtains considerable improvements. This result suggests
that a rational fusion approach can effectively reduce the informa-
tion redundancy across modalities and enhance multimodal syn-
ergy, while the local-to-global embedding strategy contributes to
discriminative representations for more reliable results.

The results reported in Table 3 further verify the generalizabil-
ity of the proposed method. We can find that our approach
achieves competitive results overall, with 1.9%, 1.25%, and 0.51%
improvements on RLVS, RWF-2000 (abbreviated as RWF), and
Crowd, respectively. However, we notice that the improvement
on these datasets is not as remarkable as on the VSD2015 dataset.
On the one hand, most of these datasets are shot by fixed-view
devices without scene switching, resulting in a single form of vio-
lence. On the other hand, the image resolution is relatively low due
to hardware constraints. In contrast, the VSD2015 dataset origi-
nates from film footage, with artistic expressions such as depth
of field changes and camera movements, thus producing complex
and diverse scenes of violence. This also confirms the advantages
of the proposed method for semantic parsing in complex scenarios.
Table 2
Comparisons with state-of-the art methods on the VSD2015 dataset.

Method AP

MIC-TJU [59] 0.2848
FSP [33] 0.2947

Fudan–Huawei [12] 0.2959
Constantin et al. [60] 0.2968
Peixoto et al. [57] 0.301

Li et al. [61] 0.303
Zheng et al. [58] 0.3242
Gu et al. [17] 0.4131

Ours 0.4739
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In addition, the annotations of the other datasets are coarser than
those of the VSD2015 dataset, and the following ablation studies
demonstrate the prominent contribution of fine-grained annota-
tion for semantic embedding.
4.5. Ablation study

Here, we evaluate the effectiveness of the proposed method in
both quantitative and qualitative terms. We first perform ablation
studies to investigate the contribution of each modality. Subse-
quently, we discuss different multimodal fusion approaches to ver-
ify the capacity of MCN. Finally, we analyze the effect of each
component in the local-to-global embedding.
4.5.1. The effect of unimodality
We first report the effect of each modality on different datasets

in Table 4. We can find that the appearance modality has a clear
advantage over the motion modality in most cases, thanks to the
rich information on visual violence. For the Hockey dataset, pre-
senting a single physical conflict in sports, the effect of the motion
modality is slightly better than the appearance. This also indicates
that rapidly changing dynamic violence is more easily perceived
compared to static violence. In addition, we note that the audio
performance of the Crowd dataset is far from that of the
VSD2015 dataset. Because the former is captured from real scenes
of crowd violence with noisy background sounds, while the latter
is derived from movie footage with clear human and ambient
sounds. Surprisingly, the effect of audio modality in the VSD2015
dataset even surpasses the appearance modality. We deem that
the corresponding auditory violence, such as screams, explosions,
gunshots, etc., is more intuitive than the complex and variable
visual information, making it easier to distinguish audio in violent
and non-violent scenes.
Table 4
The Effect of unimodality on different datasets (accuracy in percentage except for
VSD).

Modality Dataset

Crowd Hockey RLVS RWF VSD2015

Appearance 96.49 97.2 95.3 88.25 0.3041
Motion 93.04 97.4 94.8 82.5 0.2205
Audio 77.87 - - - 0.356



Table 6
Ablation Studies of local-to-global embedding on the VSD2015 dataset.

Lce Lbce Lcos AP

Labeled Unlabeled

U 0.4527 0.4527
U U 0.4634 0.4571
U U 0.4602 0.4595
U U U 0.4739 0.4629
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Considering the model size and inference efficiency, we use the
two more effective modalities for the subsequent multimodal fea-
ture fusion. In particular, most of the audio in the Crowd dataset is
background noise without significant semantic information, we
use motion modality to capture violence such as assault and fight-
ing instead. As for the evaluated dataset lacking audio information
(i.e., Hockey, RLVS, and RWF), the motion feature is adopted as an
auxiliary modality.
Table 7
Ablation Studies of local-to-global embedding on different datasets.

Lce Lbce Lcos Accuracy (%)

Crowd Hockey RLVS RWF

U 97.38 98.3 97.4 90.5
U U 97.64 99.2 98.05 91
U U 97.57 99 97.5 90.75
U U U 98.22 99 98.15 91
4.5.2. Comparison with different fusion methods
To illustrate the advantages of the proposed multimodal cross-

fusion network, we compare the effect of different fusion strategies
on five datasets, including both early fusion and late fusion meth-
ods. As Table 5 shows, the MCN structure achieves an impressive
improvement on all datasets. Compared with direct concatenation,
the performance of the MCN-based framework on the RWF, RLVS,
and VSD dataset is improved by 1%, 0.95%, and 0.92%, respectively.
This benefits from a rational two-stage fusion strategy, in which
the cross-adaptive module eliminates the inter-modal heterogene-
ity, while the cross-perceptual module further filters task-
irrelevant redundancies to obtain the enhanced fusion feature.

In addition, compared with a single modality, multimodal
fusion can effectively boost the model performance, which is in
line with the expectation of complementarity across different
modalities. In some cases, however, feature fusion methods per-
formworse than the fusion of decision scores, which may be attrib-
uted to the simpler nature of these datasets themselves and the
tendency to cause overfitting using deep fusion models.
4.5.3. The effect of local-to-global embedding
Finally, we conduct ablation studies to explore the effect of

local-to-global embedding, as shown in Table 6. After introducing
semantic embedding objective functions (i.e., Lbce and Lcos), the test
AP of our model on the VSD2015 dataset is improved by 1.07% and
0.75%, respectively. On the one hand, the local semantic detectors
generated by the semantic correlation graph can dynamically parse
complex audiovisual violence scenes. At the same time, the global
semantic descriptor drives the violent samples to form a compact
clustering while keeping a distance from the non-violent embed-
dings. The inconsistency within the violent classes is further
mitigated.

Remarkably, without using additional multi-label annotations,
the local semantic detectors and the global descriptor both gener-
ated by co-similarity reasoning still perform well, improving 0.44%
and 0.68% over the baseline result, respectively. When we jointly
introduce local and global branches, the best AP value on the
VSD2015 test dataset is obtained. This result shows that the two
have a certain synergistic effect, which further verifies the effec-
tiveness of our contribution.

In addition, we report the effect of local-to-global embedding
on the other four datasets in Table 7. Notably, although not as sig-
nificant as the boost on the VSD2015 dataset, the embeddings
updated by the co-similarity graph also achieve good results on
Table 5
Comparison with different fusion methods (accuracy in percentage except for VSD).

Fusion Level Method Dataset

Crowd Hockey RLVS RWF VSD2015

Late Fusion WA1 96.93 97.8 96.1 88.5 0.4304
LR2 97.03 97.6 95.8 88.75 0.4311

Early Fusion Concat 96.93 97.8 96.45 89.5 0.4435
DMRN [65] 97.16 97.9 96.35 90 0.4461
MCN (Ours) 97.38 98.3 97.4 90.5 0.4527

1 Weighted Average.
2 Linear Regression.
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these datasets. Moreover, the contribution of global semantic
alignment is generally lower than that of local semantic detection
due to the smaller intra-class variance and the greater discrim-
inability of these datasets. In contrast, the local semantic detectors
cover a wide range of violence and are more sensitive to some vio-
lence variations. The above results also illustrate the robustness
and generalizability of our method.

4.6. Evaluation of efficiency

In this subsection, we report the time and space complexity of
our method, as shown in Table 8. Here, we do not take the feature
extraction stage into account since it is not the main contribution
of this paper. Our model consists of a Multimodal Cross-fusion Net-
work (MCN), a Multilayer Perceptron (MLP), and a Graph Convolu-
tional Network (GCN), corresponding to multimodal fusion,
violence detection, and local-to-global embedding, respectively.
Therefore, we mainly analyze the time–space complexity in these
modules, which include fully connected (FC) layers, group convolu-
tion and graph convolution layers.

For each FC layer, the time complexity can be expressed as

Time � O ðL� K � Din � DoutÞ; ð22Þ
where L is the length of the input feature sequence and K is the ker-
nel size. For the FC layer, K ¼ 1. Din and Dout are the input and output
feature dimensions, respectively. In terms of the space complexity,
we consider the learned parameters at each layer, denoted as

Space � O ðDin � DoutÞ: ð23Þ
The time complexity of the group convolution layer is formu-

lated as

Time � O ðL� K � Din � Dout

Ngroup
Þ; ð24Þ

where Ngroup indicates the number of grouped channels. For
Ngroup ¼ 1, this operation is equivalent to the FC layer. Similarly,
its space complexity can be expressed as

Space � O ðDin � Dout

Ngroup
Þ: ð25Þ

With respect to GCN layers, we take the time complexity of
matrix multiplication into account. Given two matrices with sizes
M � N and N � Q , respectively, the time complexity is denoted as

Time � O ðM � N � QÞ: ð26Þ



Table 8
Analysis of time–space complexity of our method.

Module Layer Layer num Time Space

MCN Group Conv 3 L�1 � 2048� 2048
512 2048� 2048

512

FC 3 2L�1�2048�128 2048 � 128
FC 1 2L � 1 � 128 � 2048 128 � 2048

MLP Group Conv 1 L � 1 � 4096� 1024
8 4096� 1024

8

FC 1 L � 1 � 1024 � 300 1024 � 300
FC 1 L � 1 � 300 � 2 300 � 2

GCN Lc�Lc � 64 Lc�Lc
GCN 2 Lc � 300 � 64 300 � 64

Lc � Lc � 300 Lc � Lc

Lc indicates the number of graph nodes.

Table 9
Comparison of efficiency with existing methods.

Model #Params FLOPs

ConvLSTM [13] 9.6 M 14.40G
Efficient Conv3D [16] 7.4 M 10.43G
VGG16 + LSTM [55] 2.06 M 24.13 M

Flow Gated Network [41] 0.27 M 0.54 M
SepConvLSTM [43] 0.33 M 1.93 M
ViolenceNet [42] 4.5 M -

Ours 1.98 M 6.35 M

Fig. 6. Local Semantic Detection results of the proposed model on the VSD2015 dataset.
sub-concepts.
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Regarding space complexity, we mainly consider the size of the
adjacency matrix and the learned weights, which can be formu-
lated as

Space � O ðM � NÞ: ð27Þ
In addition, We compare the efficiency of our framework with

several SOTA methods, in terms of model size and algorithm com-
plexity. As shown in Table 9, our model achieves a good balance
between the number of parameters and floating-point operations
(FLOPs). Compared to the algorithms proposed in [13]16, our
model has a lower number of trainable parameters and requires
significantly fewer FLOPs, ensuring faster computation and infer-
ence efficiency. In particular, our framework outperforms Vio-
lenceNet [42] by 1.32% and 2.55% on the Crowd and RLVS
datasets with fewer parameters, respectively, which is attributed
to efficient group convolution layers in MCN. Moreover, our model
surpasses Flow Gated Network [41] and SepConvLSTM [43] by
3.75% and 1.25% on the RWF-2000 dataset, achieving significant
performance gains with a few additional parameters.

4.7. Qualitative analysis

To highlight the contribution of this paper, we visualize the
results after local-to-global embedding. Fig. 6 shows several vio-
lent videos in the VSD2015 dataset after local semantic detection.
We can see that these video images have a variety of styles with
The histogram represents the degree of response of these videos to different violent
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significant intra-class variances, and thus dynamically respond to
multiple local semantics. We also notice that visual violence such
as abuse, blood, and fighting show certain co-occurrence trends,
while auditory violence such as explosions and gunshots have a
strong semantic correlation. The local semantic detectors parse
complex scenes into fine-grained entities by detecting sub-
concepts of violence simultaneously, providing an interpretable
basis for the judgment of violence.

In addition, we compare the video embedding distributions
before and after global semantic alignment using t-SNE in Fig. 7.
We can find that violent and non-violent classes are chaotically
distributed in the common semantic space before alignment,
Fig. 7. Distributions of discriminative features using t-SNE on the VSD2015 dataset. T
respectively.

Fig. 8. Several videos in the RWF-2000 dataset that are corrected after semantic embedd
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reflecting a large intra-class variance of the VSD2015 dataset. After
global semantic alignment, both forms compact clusters in the
semantic space, respectively. This is because the global semantic
descriptor guides violent samples closer to it while enlarging the
interclass gap with nonviolent samples. The visualization results
further demonstrate the validity and necessity of the global
semantic alignment.

Finally, we present the qualitative results of semantic embed-
ding on the RWF-2000 dataset in Fig. 8. We notice that most cases
of incorrect prediction are caused by the low resolution of the
surveillance videos. Also, some fixed panoramas with a larger field
of view make it challenging to discern action details, where normal
he left/right panels show the results before and after global semantic alignment,

ing. Red font indicates the category of violence, while black indicates nonviolence.
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body contact, such as handshakes, hugs, etc., are treated as con-
flicts. And in the nighttime environment, dim images can also be
a cause of the error. With local-to-global embedding, these mis-
judged samples located at the decision boundary are further cor-
rected, which also demonstrates that our method is feasible for
violence detection in multiple views and scenarios.

5. Conclusion

In this paper, we propose a novel semantic multimodal violence
detection framework with local-to-global embedding. For multi-
modal features, we construct a multimodal cross-fusion network
(MCN) to eliminate inter-modal heterogeneity and achieve cross-
modal enhancement. In particular, we parse generalized violence
into a series of sub-concepts to capture the essence of violence.
The corresponding word embeddings of violence sub-concepts
are introduced to generate local semantic detectors and the global
semantic descriptor. The former dynamically captures the specific
violence semantics in video embeddings, while the latter prompts
the violent classes to form a compact cluster thus reducing the
intra-class variance. The two embeddings work together in a
multi-task learning fashion to guide optimization. We demonstrate
the effectiveness of the proposed method through a series of qual-
itative and quantitative experiments. In the future, we will intro-
duce different external knowledge to adapt to more complex
scenarios. Also, we will extend our work to address violence local-
ization tasks.
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